
1

SERIOUS ABOUT SOFTWARE

Qt Quick – Hybrid models

Timo Strömmer, Jan 10, 2011

Contents

• QML-C++ hybrids

• Exporting objects and properties into QML

• Writing QML plug-ins

• Qt Mobility

• Integration with mobile peripherals

• QML-Web hybrids

• Web browser integration

• Web services

2

C++/QML HYBRIDS

Simple C++ / QML integration example

3

Hybrid programs

• Hybrid programs get the benefit from both

worlds

• Ease of QML / script programming

• See for example hellographics vs. HelloGraphicsQML

• Power and flexibility of C++

• Access to all services provided by the platform

• C++ performance with larger data-sets

4

QML/C++ hybrid

• A C++ GUI application may contain

QDeclarativeView GUI components

• Available for example via the GUI designer

• Each runs it’s own declarative engine

• qmlviewer also runs one

• Resource-wise it’s not a good idea to run many

views in a single program

5

QML/C++ hybrid

• QDeclarativeView has setSource function,

which takes the URL of the QML file as

parameter

• Thus, can load also from web

• The QML files of the application can also be

bundled into a resource file

6

QML/C++ exercise

• Create a new Qt GUI Project

• Add a QDeclarativeView to the GUI form

• Add QT += declarative to .pro file

• Takes declarative QT module into use

• Add a QML file to the project

• Implement a GUI

• Add a new Qt resource file to project

• Add a / prefix

• Add the QML file under the prefix

7

QML/C++ exercise

• Load the QML file from resource in the

MainWindow constructor

• Build and run

8

QML/C++ interaction

• To access the QML core from C++ side, the

QDeclarativeView exposes a root context

• QDeclarativeContext class

• A property can be set with

setContextProperty function

• Access normally by name in QML

9

rectColor becomes
property of root

QML element

Exporting objects to QML

• Objects are registered with

qmlRegisterType template function

• Object class as template parameter

• Function parameters:

• Module name

• Object version number (major, minor)

• Name that is registered to QML runtime

10

Details about modules from:
http://doc.trolltech.com/4.7/qdeclarativemodules.html

http://doc.trolltech.com/4.7/qdeclarativemodules.html
http://doc.trolltech.com/4.7/qdeclarativemodules.html
http://doc.trolltech.com/4.7/qdeclarativemodules.html

• The exported classes can be used as any

other QML component

• The module needs to be imported

Using exported classes

11

QML object visibility

• Visibility at QML side

• QObject properties become element properties

• on<Property>Changed hook works if the NOTIFY signal

is specified at C++ side

- Also note that C++ signal name doesn’t matter

• QObject signals can be hooked with on<Signal>

• QObject slots can be called as JS functions

12

HYBRID PROGRAMMING

QML plug-in projects

13

QML plug-ins

• A plug-in allows QML runtime to load

Qt/C++ libraries

• Thus, QML/C++ hybrid code can be run via

qmlviewer or some other QML launcher

application

14

Quick start

• Create a QML extension plug-in project

• Wizard generates one QObject-based class

15

QML plug-in basics

• A QML plug-in library must have a class

which extends QDeclarativeExtensionPlugin

• Wizard generates

• The plugin has registerTypes function, which is

used to define components that are exported to

the QML runtime

16

QML plug-in basics

• The API used by QML runtime to load the

plug-in is created via preprocessor macro

• Q_EXPORT_PLUGIN if plug-in project and class

names are the same (wizard does that)

• Q_EXPORT_PLUGIN2 if names are different

• See qmlpluginexample directory

17

QML plug-in basics

• The plug-in must define a qmldir file

• Describes the name of the plug-in to load

• libmobilityplugin.so on Linux

• mobilityplugin.dll on Windows

• Optionally may specify a sub-directory

18

Quick start continued

• Create a QML application project

• Copy the qmldir file from the C++ plug-in into

the application directory

• Edit the C++ plug-in .pro file

• Add DESTDIR statement to point to the QML

application directory

19

Quick start continued

• Switch to Release build

• Fails with Debug libraries

• Build

• The .so or .dll should be in the QML application

directory where qmldir file also sits

20

Example plug-in

• See PluginExample and qmlpluginexample

directories

• Stores TextInput content into a file while user is

typing

• Uses QSettings API from Qt core

• File in ~/.config/Symbio/QmlPluginExample.conf

21

22

23

